The appearance of continuous advancements in technology within the dentistry practice, the clinician has reported many tools to evaluate their job performance and thus to improve both technical quality and performance. Moreover, it has revolutionized teaching in dental schools worldwide who have incorporated technology into their processes of formation of future dentists. This is why most schools now have simulation labs, where students develop the necessary clinical skills before attending to their patients.[1,2]

With the emergence of the digital age and the advent of technology computer-aided design (CAD) - computer-aided manufacturing (CAM) 3, the dentist has endless possibilities that were unthinkable until recently, such as the fact of preparing a ceramic restoration without the need for a print a temporary or a working model.[3,4]

Chairside economical restoration of esthetic ceramics (CEREC) is a system developed at the Zurich Univesidad, Mormon and Brandestini by teachers in conjunction with Sirona 4 just thinking dental procedures to simplify and improve their technical quality. Since its creation based 1980, has evolved constantly looking to get esthetic restorations with excellent marginal values integrity and survival. Currently, in its fourth generation CEREC AC [Figure 1], which allows using a biogenerically software, then design and make ceramic restorations, controlling all possible clinical parameters. Taking advantage of the characteristics of the CEREC system, some dental schools like Tennessee, by Dr. Dehghan have incorporated its use in the educational process of their undergraduates, for example in learning dental morphology for students from 1st year to prepare and simulated fixed prosthesis milling 3rd year, and clinical as such for 4th year students.[5]

Based on these positive experiences in the implementation of CAD technologies - CAM training future dentists, we have developed a pilot test students in 3rd year. Select a universe of 36 volunteer students from 3rd year of dental school at the University of the Andes, which already passed the module preclinical fixed prostodontics and was divided into two groups at random, the first (study group), are asked to perform the cut stump for a fixed prosthesis unitary work piece marfilina 1.6, a simulation model Frasaco, after preparation [Figure 2] is scanned and reconstructed on the screen by using software, allowing the student for 10 min to see their work and then correct what he deemed advisable, to finally re-scan preparation when completed. The second group (control) you will only be asked to do the carving, and finally scan the slides and view them, but without the ability to correct them. Parallel walls, peripheral termination homogeneous thickness vestibular wear and palatal insertion axis and overall look of.

Completed this stage, two teachers teaching area oral rehabilitation, to assess by a pattern of correction issues as requested stump. Assigning a value to each item and finally a final preparation to score more than 18 points, the assessors were blind teachers about the student they were evaluating.
Obtained results were tabulated and subjected to descriptive statistical treatment, where the results obtained in the study group compared two instances; pre and post use scanner corrections and conducting against the control group [Figures 3 and 4].

In reviewing the results it is concluded that the students had the opportunity to assess their preparations tridimensionalmente, which allowed them to identify the mistakes, achieve a final preparation with parallel walls of a percentage much higher than the control group and they run corrections agencies. This creates instances autoapredisiage technology associated with the use of CAD - CAM CEREC AC. In addition to these students earned a control group and themselves prior to making corrections much higher end score.

<table>
<thead>
<tr>
<th>Group</th>
<th>Study</th>
<th>Study Post-Cerec</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad</td>
<td>n=17</td>
<td>n=7</td>
<td>n=12</td>
</tr>
<tr>
<td>%</td>
<td>66,67%</td>
<td>38,89%</td>
<td>66,67%</td>
</tr>
<tr>
<td>Regular</td>
<td>n=1</td>
<td>n=0</td>
<td>n=1</td>
</tr>
<tr>
<td>%</td>
<td>5,56%</td>
<td>0%</td>
<td>5,56%</td>
</tr>
<tr>
<td>Good</td>
<td>n=18</td>
<td>n=18</td>
<td>n=18</td>
</tr>
<tr>
<td>%</td>
<td>27,78%</td>
<td>61,11%</td>
<td>27,78%</td>
</tr>
</tbody>
</table>

Figure 3: Share statistics for keystone wall

Figure 4: Chart of boxes total score

This pilot study because of the limited sample size only allows us to shed some light on how you might improve learner undergraduate students, with the use of CAD technologies - CAM, approaching the standards of dental schools developed countries. Future studies with a larger number of students would be required to demonstrate the potential that could mean having this technology in the development of curricula and the contribution it could make to research in teaching. This work had the support of Sirona, which facilitated CAD-CAM equipment.

Gilbert Jorquera¹, Christian Córdova¹, Eduardo Mahn¹, Franco Cacciuttolo¹, Eduardo Fernandez²

¹Departement of Oral Rehabilitation, Faculty of Dentistry, Universidad de los Andes, Chile, ²Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile. Email: gjorquera@uandes.cl

How to cite this article:

doi: 10.15713/ins.sjod.1

References